Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.034
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1334581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644963

RESUMO

Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , AVC Isquêmico , Humanos , AVC Isquêmico/complicações , AVC Isquêmico/microbiologia , Eixo Encéfalo-Intestino/fisiologia , Animais , Disbiose , Encéfalo/microbiologia , Translocação Bacteriana , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/etiologia
2.
Dig Dis Sci ; 69(4): 1242-1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441784

RESUMO

BACKGROUND: Intestinal barrier dysfunction in acute pancreatitis (AP) may progress to systemic inflammatory response syndrome (SIRS) and multi-organ failures by causing bacterial translocation. Larazotide acetate (LA) is a molecule that acts as a tight junction (TJ) regulator by blocking zonulin (Zo) receptors in the intestine. AIMS: In our study, we aimed to investigate the effects of LA on intestinal barrier dysfunction and bacterial translocation in the AP model in rats. METHODS: Thirty-two male Sprague-Dawley rats were divided into 4 groups; control, larazotide (LAR), AP, and AP + LAR. The AP model was created by administering 250 mg/100 g bm L-Arginine intraperitoneally 2 times with an hour interval. AP + LAR group received prophylactic 0.01 mg/mL LA orally for 7 days before the first dose of L-Arginine. For intestinal permeability analysis, fluorescein isothiocyanate-dextran (FITC-Dextran) was applied to rats by gavage. The positivity of any of the liver, small intestine mesentery, and spleen cultures were defined as bacterial translocation. Histopathologically damage and zonulin immunoreactivity in the intestine were investigated. RESULTS: Compared to the control group, the intestinal damage scores, anti-Zo-1 immunoreactivity H-Score, serum FITC-Dextran levels and bacterial translocation frequency (100% versus 0%) in the AP group were significantly higher (all p < 0.01). Intestinal damage scores, anti-Zo-1 immunoreactivity H-score, serum FITC-Dextran levels, and bacterial translocation frequency (50% versus 100%) were significantly lower in the AP + LAR group compared to the AP group (all p < 0.01). CONCLUSIONS: Our findings show that LA reduces the increased intestinal permeability and intestinal damage by its effect on Zo in the AP model in rats, and decreases the frequency of bacterial translocation as a result of these positive effects.


Assuntos
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Enteropatias , Pancreatite , Ratos , Masculino , Animais , Pancreatite/metabolismo , Mucosa Intestinal/metabolismo , Ratos Sprague-Dawley , 60435 , Translocação Bacteriana , Doença Aguda , Oligopeptídeos/farmacologia , Enteropatias/metabolismo , Arginina , Permeabilidade
3.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456079

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Assuntos
Meningite , Streptococcus suis , Animais , Humanos , Suínos , Plasminogênio/metabolismo , Barreira Hematoencefálica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Translocação Bacteriana , Fibrinolisina/metabolismo , Sítios de Ligação , Fosfopiruvato Hidratase/química
4.
Dig Dis Sci ; 69(3): 798-810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334934

RESUMO

BACKGROUND: Currently, the mechanisms of impaired gut mucosal immunity in sepsis remain unclear. Gut immunoglobulin A (IgA) is an important defense mechanism against invasive pathogens, and CD4+ T cells regulate the IgA response. AIM: We aimed to verify the hypothesis indicating that CD4+ T pyroptosis induced by lipopolysaccharide (LPS) leads to an impaired gut IgA response and subsequent bacterial translocation and organ damage. METHODS: Cultured CD4+ T cells and mice were manipulated with LPS, and pyroptosis was improved by A438079 or adoptive CD4+ T cell transfer. The changes demonstrated in pyroptosis-related molecules, cytotoxicity and CD4+ T cells were examined to determine CD4+ T pyroptosis. The changes demonstrated in IgA+ B cells, AID (key enzyme for immunoglobulins) and IgA production and function were examined to evaluate the IgA response. Serum biomarkers, bacterial colonies and survival analysis were detected for bacterial translocation and organ damage. RESULTS: LPS attack induced CD4+ T pyroptosis, as evidenced by increased expression of P2X7, Caspase-11 and cleaved GSDMD, which elevated cytotoxicity and decreased CD4+ T cells. Decreased CD4+ T subsets (Foxp3+ T and Tfh cells) influenced the IgA response, as evidenced by lower AID expression, which decreased IgA+ B cells and IgA production and function. A438079 or cell transfer improved the IgA response but failed to reduce the translocation of gut pathogens, damage to the liver and kidney, and mortality of mice. CONCLUSION: LPS attack results in CD4+ T pyroptosis. Improvement of pyroptosis restores the mucosal IgA response but fails to ameliorate bacterial translocation and organ damage.


Assuntos
Imunoglobulina A , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Piroptose , Translocação Bacteriana , Linfócitos T CD4-Positivos
5.
Cell ; 187(6): 1387-1401.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412859

RESUMO

The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Retiniana , Animais , Camundongos , Translocação Bacteriana , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Retinite Pigmentosa/patologia
6.
Nat Commun ; 15(1): 427, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199995

RESUMO

The microbiome in a specific human organ has been well-studied, but few reports have investigated the multi-organ microbiome as a whole. Here, we aim to analyse the intra-individual inter-organ and intra-organ microbiome in deceased humans. We collected 1608 samples from 53 sites of 7 surface organs (oral cavity, esophagus, stomach, small intestine, appendix, large intestine and skin; n = 33 subjects) and performed microbiome profiling, including 16S full-length sequencing. Microbial diversity varied dramatically among organs, and core microbial species co-existed in different intra-individual organs. We deciphered microbial changes across distinct intra-organ sites, and identified signature microbes, their functional traits, and interactions specific to each site. We revealed significant microbial heterogeneity between paired mucosa-lumen samples of stomach, small intestine, and large intestine. Finally, we established the landscape of inter-organ relationships of microbes along the digestive tract. Therefore, we generate a catalogue of bacterial composition, diversity, interaction, functional traits, and bacterial translocation in human at inter-organ and intra-organ levels.


Assuntos
Apêndice , Microbiota , Humanos , Translocação Bacteriana , Estômago , Microbiota/genética , Boca
7.
J Am Nutr Assoc ; 43(1): 59-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37294082

RESUMO

This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.


Assuntos
Artrite Reumatoide , Citrulinação , Animais , Translocação Bacteriana , Disbiose/complicações , Artrite Reumatoide/terapia , Inflamação/complicações , Peptídeos/metabolismo
8.
Int J Mol Sci ; 24(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003692

RESUMO

Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Animais , Humanos , Translocação Bacteriana , Cirrose Hepática/patologia , Fígado/patologia , Hepatopatias/patologia , Disbiose/microbiologia
9.
Front Immunol ; 14: 1253121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744357

RESUMO

Background: There is growing evidence of the significance of gastrointestinal complaints in the impairment of the intestinal mucosal barrier function and inflammation in fibromyalgia (FM) and in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, data on intestinal permeability and gut barrier dysfunction in FM and ME/CFS are still limited with conflicting results. This study aimed to assess circulating biomarkers potentially related to intestinal barrier dysfunction and bacterial translocation and their association with self-reported symptoms in these conditions. Methods: A pilot multicenter, cross-sectional cohort study with consecutive enrolment of 22 patients with FM, 30 with ME/CFS and 26 matched healthy controls. Plasma levels of anti-beta-lactoglobulin antibodies (IgG anti-ß-LGB), zonulin-1 (ZO-1), lipopolysaccharides (LPS), soluble CD14 (sCD14) and interleukin-1-beta (IL-1ß) were assayed using ELISA. Demographic and clinical characteristics of the participants were recorded using validated self-reported outcome measures. The diagnostic accuracy of each biomarker was assessed using the receiver operating characteristic (ROC) curve analysis. Results: FM patients had significantly higher levels of anti-ß-LGB, ZO-1, LPS, and sCD14 than healthy controls (all P < 0.0001). In ME/CFS patients, levels of anti-ß-LGB, ZO-1, LPS, and sCD14 were significantly higher than controls, but lower than in FM (all P < 0.01), while there was no significant difference in IL-1ß level. In the FM and ME/CFS cohorts, both anti-ß-LGB and ZO-1 correlated significantly with LPS and sCD14 (P < 0.001 for both). In the FM group, both anti-ß-LGB and ZO-1 were correlated significantly with physical and mental health components on the SF-36 scale (P < 0.05); whereas IL-1ß negatively correlated with the COMPASS-31 score (P < 0.05). In the ME/CFS cohort, ZO-1 was positively correlated with the COMPASS-31 score (P < 0.05). The ROC curve analysis indicated a strong ability of anti-ß-LGB, ZO-1, LPS and sCD14 to predictively distinguish between FM and ME/CFS from healthy controls (P < 0.0001). Conclusion: Biomarkers of intestinal barrier function and inflammation were associated with autonomic dysfunction assessed by COMPASS-31 scores in FM and ME/CFS respectively. Anti-ß-LGB antibodies, ZO-1, LPS, and sCD14 may be putative predictors of intestinal barrier dysfunction in these cohorts. Further studies are needed to assess whether these findings are causal and can therefore be applied in clinical practice.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Síndrome de Fadiga Crônica/diagnóstico , Translocação Bacteriana , Estudos Transversais , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Inflamação
10.
Food Funct ; 14(18): 8186-8200, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37599609

RESUMO

Bacterial translocation (BT), with antibiotic use as an inducer, is associated with increased risk of developing multiple inflammatory disorders, and is closely associated with intestinal barrier integrity. Deacetylated konjac glucomannan (DKGM) and konjac oligo-glucomannan (KOGM) are two of the most widely used derivatives in the food industry. They are structurally and physiologically distinct from konjac glucomannan (KGM), and previous studies have confirmed their prebiotic effects. But whether they play a role in antibiotic-induced BT is unknown. Here, we applied an antibiotic cocktail (Abx) to a mouse model and investigated whether and how KGM and its derivatives function in BT and inflammation response amelioration during and after antibiotics, and which intervention plan is more effective. The results showed that KGM and its derivatives all inhibited BT. The colon tissue lesions caused by BT were largely alleviated, and short-chain fatty acid (SCFA) production was highly improved with the supplementation of carbohydrates. The prolonged intervention plan using KGM and its derivatives was more efficient than intervention only during the Abx administration period. Among the three dietary fibers, KGM behaved best, while DKGM and KOGM behaved equivalently. Additionally, KGM and its derivatives all reduced the inflammatory response accompanying BT, but DKGM may have a direct inhibitory efficacy in inflammation other than that through IL-10, unlike KGM or KOGM.


Assuntos
Translocação Bacteriana , Intestinos , Animais , Camundongos , Antibacterianos , Modelos Animais de Doenças , Inflamação , Prebióticos
11.
mBio ; 14(5): e0049223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623323

RESUMO

IMPORTANCE: Long-term prescription of proton pump inhibitors (PPIs) in patients with cirrhosis is common practice. However, in recent years, several observational studies have reported increased complications and negative prognostic effects of PPI treatment in these patients. Judging the significance of these associations is complicated by the fact that a plausible underlying pathomechanism has not been identified so far. In the present study, we address this important issue by investigating the impact of PPI treatment on subclinical bacterial translocation from the gut into the blood stream in patients with advanced cirrhosis and portal hypertension. Indeed, we report significantly aggravated bacterial translocation in cirrhosis patients receiving PPI treatment. This finding is highly relevant, as bacterial translocation is known to promote the development of complications and impair prognosis in patients with cirrhosis. Hence, the present study could establish a plausible link between PPI treatment and adverse effects in cirrhosis.


Assuntos
Hipertensão Portal , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Translocação Bacteriana , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/microbiologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Prognóstico
12.
Front Immunol ; 14: 1200769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346043

RESUMO

Introduction: Systemic lupus erythematosus is an autoimmune disease with multisystemic involvement including intestinal inflammation. Lupus-associated intestinal inflammation may alter the mucosal barrier where millions of commensals have a dynamic and selective interaction with the host immune system. Here, we investigated the consequences of the intestinal inflammation in a TLR7-mediated lupus model. Methods: IgA humoral and cellular response in the gut was measured. The barrier function of the gut epithelial layer was characterised. Also, microbiota composition in the fecal matter was analysed as well as the systemic humoral response to differential commensals. Results: The lupus-associated intestinal inflammation modifies the IgA+ B cell response in the gut-associated lymphoid tissue in association with dysbiosis. Intestinal inflammation alters the tight junction protein distribution in the epithelial barrier, which correlated with increased permeability of the intestinal barrier and changes in the microbiota composition. This permeability resulted in a differential humoral response against intestinal commensals. Discussion: Lupus development can cause alterations in microbiota composition, allowing specific species to colonize only the lupus gut. Eventually, these alterations and the changes in gut permeability induced by intestinal inflammation could lead to bacterial translocation.


Assuntos
Doenças Autoimunes , Humanos , Linfócitos B , Translocação Bacteriana , Inflamação , Imunoglobulina A
13.
Acta Paediatr ; 112(10): 2210-2217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37378619

RESUMO

AIM: The gut-liver axis may contribute to pathophysiology of cholestatic liver disorders like biliary atresia (BA) by bacterial translocation (BT). Toll-like receptors (TLR) are pattern recognition receptors known to activate innate immunity and secretion of inflammatory cytokines. Herein, we examined BT-associated biomarkers and TLRs in relation to liver injury after successful portoenterostomy (SPE) in BA. METHODS: Serum levels of lipopolysaccharide-binding protein (LBP), CD14, LAL, TNF-α, IL-6 and FABP2 along with liver expression of TLRs (TLR1, TLR4, TLR7 and TLR9), LBP and CD14 were measured during median 4.9 (1.7-10.6) years follow-up after SPE in 45 BA patients. RESULTS: Serum LBP, CD14, TNF-α and IL-6 all increased after SPE whereas LAL and FABP-2 remained unchanged. Serum LBP correlated positively with CD14 and markers of hepatocyte injury and cholestasis, but not with Metavir fibrosis stage, transcriptional markers for fibrosis (ACTA2) or ductular reaction. Serum CD14 concentration was significantly higher in patients with portal hypertension than without. While liver expression of TLR4 and LBP remained low, TLR7 and TLR1 showed marked BA-specific increases, and TLR7 correlated with Metavir fibrosis stage and ACTA2. CONCLUSION: BT does not seem to play a significant role in liver injury after SPE in our series of BA patients.


Assuntos
Atresia Biliar , Colestase , Humanos , Atresia Biliar/cirurgia , Receptor 7 Toll-Like , Interleucina-6 , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Translocação Bacteriana , Receptor 1 Toll-Like , Receptores Toll-Like , Fibrose
15.
AIDS Res Ther ; 20(1): 30, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202809

RESUMO

BACKGROUND: Gut damage allows translocation of bacterial lipopolysaccharide (LPS) and fungal ß-D-glucan (BDG) into the blood. This microbial translocation contributes to systemic inflammation and risk of non-AIDS comorbidities in people living with HIV, including those receiving antiretroviral therapy (ART). We assessed whether markers of gut damage and microbial translocation were associated with cognition in ART-treated PLWH. METHODS: Eighty ART-treated men living with HIV from the Positive Brain Health Now Canadian cohort were included. Brief cognitive ability measure (B-CAM) and 20-item patient deficit questionnaire (PDQ) were administered to all participants. Three groups were selected based on their B-CAM levels. We excluded participants who received proton pump inhibitors or antiacids in the past 3 months. Cannabis users were also excluded. Plasma levels of intestinal fatty acid binding protein (I-FABP), regenerating islet-derived protein 3 α (REG3α), and lipopolysaccharides (LPS = were quantified by ELISA, while 1-3-ß-D-glucan BDG) levels were assessed using the Fungitell assay. Univariable, multivariable, and splines analyses were performed. RESULTS: Plasma levels of I-FABP, REG3α, LPS and BDG were not different between groups of low, intermediate and high B-CAM levels. However, LPS and REG3α levels were higher in participants with PDQ higher than the median. Multivariable analyses showed that LPS association with PDQ, but not B-CAM, was independent of age and level of education. I-FABP, REG3α, and BDG levels were not associated with B-CAM nor PDQ levels in multivariable analyses. CONCLUSION: In this well characterized cohort of ART-treated men living with HIV, bacterial but not fungal translocation was associated with presence of cognitive difficulties. These results need replication in larger samples.


Assuntos
Infecções por HIV , Masculino , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Lipopolissacarídeos , Autorrelato , Biomarcadores , Canadá , Glucanos , Cognição , Translocação Bacteriana
16.
Liver Int ; 43(8): 1793-1802, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249050

RESUMO

BACKGROUND: Nucleotide-binding oligomerization domain containing 2 (NOD2) risk variants lead to impaired mucosal barrier function, increased bacterial translocation (BT), and systemic inflammation. AIM: To evaluate the association between the presence of NOD2 risk variants, BT, inflammation, and hepatic encephalopathy (HE). PATIENTS AND METHODS: This prospective multicenter study included patients with cirrhosis and testing for NOD2 risk variants (p.R702W, p.G908R, c.3020insC, N289S, and c.-958T>C). Patients were evaluated for covert (C) and overt (O) HE. Markers of systemic inflammation (leukocytes, CRP, IL-6, LBP) and immune activation (soluble CD14) as well as bacterial endotoxin (hTRL4 activation) were determined in serum. RESULTS: Overall, 172 patients (70% men; median age 60 [IQR 54-66] years; MELD 12 [IQR 9-16]; 72% ascites) were included, of whom 53 (31%) carried a NOD2 risk variant. In this cohort, 11% presented with OHE and 27% and CHE. Presence and severity of HE and surrogates of inflammation, BT, and immune activation did not differ between patients with and without a NOD2 risk variant, also not after adjustment for MELD. HE was associated with increased ammonia and systemic inflammation, as indicated by elevated CRP (w/o HE: 7.2 [2.7-16.7]; with HE 12.6 [4.5-29.7] mg/dL; p < 0.001) and elevated soluble CD14 (w/o HE 2592 [2275-3033]; with HE 2755 [2410-3456] ng/mL; p = 0.025). CONCLUSIONS: The presence of NOD2 risk variants in patients with cirrhosis is not associated with HE and has no marked impact on inflammation, BT, or immune activation. In contrast, the presence of HE was linked to ammonia, the acute phase response, and myeloid cell activation.


Assuntos
Encefalopatia Hepática , Proteína Adaptadora de Sinalização NOD2 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amônia , Translocação Bacteriana , Encefalopatia Hepática/complicações , Inflamação , Receptores de Lipopolissacarídeos , Cirrose Hepática/complicações , Proteína Adaptadora de Sinalização NOD2/genética , Estudos Prospectivos
17.
Biomed Pharmacother ; 162: 114644, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018992

RESUMO

Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the different barrier components for the development of chemotherapy-induced gut toxicity. This review present an overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional standpoint but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear temporal or succession between the different gastrointestinal events and barrier functions, especially as chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial translocation. A thorough characterization of this would need to include a time dependent development of neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and dosing regimens.


Assuntos
Antineoplásicos , Neutropenia , Humanos , Translocação Bacteriana , Mucosa Intestinal/microbiologia , Permeabilidade , Muco
18.
Anaerobe ; 81: 102733, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086754

RESUMO

The genus Fusobacterium contains currently 13 species presenting as non-sporing, obligate anaerobic, Gram-negative fusiform rods. Fusobacterium ulcerans was discovered in 1988 causing tropical ulcers. We present the case of a patient with diverticulitis complicated with bacteremia. Both aerobic bottles were positive at 20 and 24 h, while one anaerobic bottle was positive at 36 h. Escherichia coli and Fusobacterium ulcerans were identified from subcultures by MALDI-TOF MS with a score of 2.02 and 2.35, respectively. The 16S rRNA gene was sequenced in order to confirm the identification of F. ulcerans with a 100% homology to the reference strain. The patient was treated with 4 g/0,5 g of IV piperacillin/tazobactam and later with 1 g/0,2 g of amoxicillin/clavulanic during 7 days with good clinical evolution.


Assuntos
Bacteriemia , Translocação Bacteriana , Humanos , RNA Ribossômico 16S/genética , Fusobacterium/genética , Bacteriemia/microbiologia , Bactérias Gram-Negativas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Trends Endocrinol Metab ; 34(5): 257-259, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890042

RESUMO

Tiny amounts of exogenous enzymes entering the plasma can exert important health-promoting functions. We propose that orally administered enzymes can potentially translocate across the gut barrier to combat reduced fitness and diseases concurrent with increased gut permeability. Engineering of the enzymes using two discussed strategies may further improve their translocation efficiency.


Assuntos
Translocação Bacteriana , Mucosa Intestinal , Humanos
20.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883565

RESUMO

Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD.


Assuntos
Transplante de Medula Óssea , Colite , Doença Enxerto-Hospedeiro , Animais , Camundongos , Transferência Adotiva/métodos , Translocação Bacteriana/genética , Translocação Bacteriana/imunologia , Transplante de Medula Óssea/efeitos adversos , Quimiocinas/sangue , Quimiocinas/genética , Quimiocinas/imunologia , Colite/sangue , Colite/genética , Colite/imunologia , Colite/patologia , Colite/terapia , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Monócitos/imunologia , Monócitos/transplante , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Receptores de Quimiocinas/sangue , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Transplante Homólogo/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...